Nonparametric estimation of the volatility function in a high-frequency model corrupted by noise

نویسنده

  • Axel Munk
چکیده

We consider the models Yi,n = ∫ i/n 0 σ(s)dWs + τ(i/n) i,n, and Ỹi,n = σ(i/n)Wi/n + τ(i/n) i,n, i = 1, . . . , n, where Wt denotes a standard Brownian motion and i,n are centered i.i.d. random variables with E ( i,n ) = 1 and finite fourth moment. Furthermore, σ and τ are unknown deterministic functions and Wt and ( 1,n, . . . , n,n) are assumed to be independent processes. Based on a spectral decomposition of the covariance structures we derive series estimators for σ and τ and investigate their rate of convergence of the MISE in dependence of their smoothness. To this end specific basis functions and their corresponding Sobolev ellipsoids are introduced and we show that our estimators are optimal in minimax sense. Our work is motivated by microstructure noise models. Our major finding is that the microstructure noise i,n introduces an additionally degree of ill-posedness of 1/2; irrespectively of the tail behavior of i,n. The method is illustrated by a small numerical study. AMS 2000 Subject Classification: Primary 62M09, 62M10; secondary 62G08.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Realized Volatility in Noisy Prices: a MSRV approach

Volatility is the primary measure of risk in modern finance and volatility estimation and inference has attracted substantial attention in the recent financial econometric literature, especially in high-frequency analyses. High-frequency prices carry a significant amount of noise. Therefore, there are two volatility components embedded in the returns constructed using high frequency prices: the...

متن کامل

Model-based Estimation of High Frequency Jump Diffusions with Microstructure Noise and Stochastic Volatility

With the advent of high frequency data, research has been instigated into the intra-day and integrated volatility, measured through e.g. realised volatility. Such measures may be contaminated by microstructure effects and jumps, leading to the development of alternative nonparametric estimators using quadratic variation measures. Instead of using such model-agnostic, non-parametric measures, th...

متن کامل

System Identification Based on Frequency Response Noisy Data

In this paper, a new algorithm for system identification based on frequency response is presented. In this method, given a set of magnitudes and phases of the system transfer function in a set of discrete frequencies, a system of linear equations is derived which has a unique and exact solution for the coefficients of the transfer function provided that the data is noise-free and the degrees of...

متن کامل

System Identification Based on Frequency Response Noisy Data

In this paper, a new algorithm for system identification based on frequency response is presented. In this method, given a set of magnitudes and phases of the system transfer function in a set of discrete frequencies, a system of linear equations is derived which has a unique and exact solution for the coefficients of the transfer function provided that the data is noise-free and the degrees of...

متن کامل

Robust Identification of Smart Foam Using Set Mem-bership Estimation in A Model Error Modeling Frame-work

The aim of this paper is robust identification of smart foam, as an electroacoustic transducer, considering unmodeled dynamics due to nonlinearities in behaviour at low frequencies and measurement noise at high frequencies as existent uncertainties. Set membership estimation combined with model error modelling technique is used where the approach is based on worst case scenario with unknown but...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009